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Six-Dimensional Dirac Equation 
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The Dirac equation in six-dimensional relativity (three space and three time) is 
considered and shown to correspond to particles which have spatial spin-�89 and 
temporal spin-�89 Explicit forms~of the spinor transformation are found. Plane 
wave solutions are obtained and their properties are given in terms of spatial and 
temporal spins and helicities. An expression is found for the charge conjugation 
operator. 

1. INTRODUCTION 

When certain schemes are introduced to extend the four-dimensional 
Lorentz transformations to deal with superluminal transformations between 
inertial frames it is found that some space-time coordinates become imagin- 
ary (Recami and Mignani, 1974; Maccarrone et al., 1983). But it has been 
shown (Cole, 1977) that the coordinates remain real and the transformations 
linear when the number of coordinates is raised to six. This introduces two 
extra time coordinates. Extra time coordinates have been introduced by 
various authors (Dattoli and Mignani, 1978; Demers, 1975; Pappas, 1982; 
Patty, 1982; Patty and Smalley, 1985; Pavsic, 1981; Vysin, 1978; Ziino, 
1981) and criticisms of this approach have been made (Strnad, 1983; 
Weinberg, 1980; Spinelli, 1979; Ray, 1979; Dorling, 1970). Since there are 
different ways of introducing extra coordinates, the methods of the above 
authors give differing predictions to some degree. For example, the methods 
of Pappas and Ziino predict no transverse Doppler effect and no Thomas 
precession. 

Any reasonable theory involving six dimensions must (i) include the 
standard four-dimensional theory as a special case, (it) explain why we detect 
only one time dimension, and (iii) make testable predictions which are not 
made by the standard theory. The model of Cole (1980) satisfies requirement 
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(i). Requirement (ii) is demonstrated by showing that (Cole and Buchanan, 
1982) the energy magnitude required to turn the time vector of a particle of 
mass M through an angle ~9 is 2Mc 2 sin(0/2), which for M =  1 kg and 

= 1 ~ is 1.57 x 10 ~5 J. Thus an everyday macroscopic object requires a very 
large energy input in order to turn its time vector by an appreciable amount, 
and thus deviations from a common time direction are not observed. An 
attempt at requirement (iii) has been made (Cole and Starr, 1985, 1990) by 
showing that in this model redshifts can be obtained with smaller observed 
velocity than is the case in the standard four-dimensional theory. 

The work contained in this present paper was prompted by that of Patty 
and Smalley (1985), who introduced the Dirac equation in six dimensions 
and gave their interpretation of its consequences. In this paper we retain 
their representation of the 7 matrices to study spinor transformations, the 
plane wave solution, and charge conjugation. It will emerge that the six- 
dimensional Dirac equation corresponds to particles which have spatial 

. | �9 t spm-~ and temporal spm-~. 
The remainder of this section reproduces results already derived for use 

in later sections. Let I, be the n•  identity matrix and let guy= 
( -1 ,  -1 ,  -1 ,  1, 1, 1). The six-dimensional Dirac equation is 

(i~,u 0 u (1.1) 

where the last three components of the 6-vector x represent time, ~t is an 8- 
component quantity, and the ~,u (p = 1 . . . . .  6) are 8 x 8 matrices which 
satisfy 

yl, yv + yvTu = 2g~-'i8 

7/ t=  _~y,, (~,e)2 = -/8 (i= 1, 2, 3) (1.2) 

~ , j t =  ~,j,  ( 7 / j ) 2 =  i8  ( j = 4 ,  5, 6) 

The representation of Patty and Smalley to be used is 

(! 00 o l 
7j = 0 crj ( j =  1, 2, 3) 

o, 0 Oo} 
-(rj  0 0 

(i~ ~ ~/4 _ /2  0 

0 -I2 
0 0 -I2 
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o o t 
y5 = 0 0 ilz 

- i i2  0 

'0 0 0 ! )  

~6= 0 0 --I 2 

0 --12 0 

J2 0 0 

An important quantity arising later is the 8 • 8 matrix 

A - -  i ~ 4 9 t 5 ) ' 6  = 

~ 0  

,2o) 
o o~ 
0 0 

o I2 

(1.3) 

where 

x r = aVpx ~ 

O 0 
auVaU~ = 8 %  and Ox ~ - a~u Ox----z (1.4) 

The way that such a transformation is constructed is given as follows (Cole, 
1980). The motion of a particle in an inertial frame is specified by the unit 
vector ~t along the projection of its path in the time subspace and by its 
velocity v = dr /d t ,  where dt is measured along the projection in the direction 
of a. The energy of the particle is E = E~t, that is, directed along a. Writing 
~=  ( 1 -  v2) -1/2, then the 6-momentum of a particle is 

where m is its rest mass, p is its 3-momentum, and units in which c = t are 
used. The transformation between two inertial frames is given by specifying 
in each frame the quantities v and a for the two spatial origins O and O' 
of F and F'. The simplest nontrivial transformation corresponding to the 
simplicity of the standard configuration of the four-dimensional theory is 
given when the x and x', y and y', and z and z' axes are parallel and motion 

which has the properties A =A t, A2=I ,  and ~,U*A = A y  u (p = 1 , . . . ,  6). A 
Lorentz transformation linking the spacetime coordinates x" and x ~'' associ- 
ated with two inertial frames F and F'  is of the form 
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with relative speed v is along the x-x '  directions. The time vectors of O and 
O' are along the t~ and t,' axes, respectively, the t3 and t3' axes are parallel, 
and the angle between the tl and q' axes in F i s  0. Then it has been shown 
(Cole, 1985) that 

/7(7+cos O) 

1 + 7 cos 0 

0 

0 (a ~'v) = 
- y o  

v) ,2 sin 0 

1 + 7 cos 0 

1 o 

--072 sin 0 
0 0 --Tv 0 

1 + 7 cos 0 

I 0 0 0 0 

0 1 0 0 0 

0 0 7 cos0  ) , s in0  0 

0 0 --7 sin 0 1 ~2sin 2 0 0 
l + 7 c o s 0  

0 0 0 0 1 

(1.5) 

which reduces in the standard limit 0 ~ 0 to 

ap v) 

7 0 0 - T o  0 O' 
0 1 0 0 0 0 

0 0 1 0 0 0 

- T v  0 0 7 0 0 
0 0 0 0 1 0 

0 0 0 0 0 1 

The results that follow are new. In Section 2 we introduce the spinor 
transformation ~t'(x')= s (a )~(x )  and obtain an explicit form of S(a) for 
the transformation (1.5). The 6-current is introduced as ~*A 7 ~ and it is 
shown that the normalization of v/using ~ttA ~t will be frame invariant. In 
Section 3, the plane wave solutions are obtained and their properties are 
given in terms of  the spatial and temporal spins and helicities. Charge conju- 
gation is discussed in Section 4 and the charge conjugation operator is found 
to be C = 7 ~ 737476. 

2. SPINOR TRANSFORMATIONS 

Under a Lorentz transformation (1.4), the spinor transforms as 

~'(x') = Ilt'(ax ) = S(a) ~(x)  = S(a) ~(a-'  x') 
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with S(a- ' )  = S - ' (a ) .  As in the standard four-dimensional case we may easily 
show that S must satisfy 

S- 'yVS=a~uTU (2.1) 

and we may further show, with A defined in (1.3), that 

AS+A = S  -1 (2.2) 

To prove this last result, consider an infinitesimal transformation aV, = 
8vu + Aco"u, where Acovv =-Aco .~ .  On expanding S in powers of Atomy and 
keeping only the linear terms, one finds 

S = Is - (i/4)a'~Acou,, 

S - '  = 18 + (i/4)aU"Acou,, (2.3) 

S t = 18 + ( i /4)a  u vtAco, 

with 

cr uv= - a  vu = (i/2)[7 ~, 7 ~] (2.4) 

Using (2.4) and (1.3), it is easily verified that crU~t=Acr"~A and it follows 
from (2.3) that A S t A = S  -' .  Building up the transformation from infin- 
itesimals, the result (2.2) follows. 

Taking the conjugate of (1.1) gives 

On defining 

we may show that 

j~ = ~ + A T ~  (2.5) 

 g/=0 
and using (2.1) and (2.2), it follows that 

f f '  (x') =aU'~j~(x) 

Thus the quantity ju has zero divergence and transforms as a 6-vector and 
may therefore be thought of  as the 6-current. 

Further, 

~'t(x')A ~t'(x') = ~* (x)S~ ASvt(x)  = ~* (x)A ~t(x) 

and so a normalization of  ~ using the quantity vttA ~, will be frame invariant. 
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Note that in the corresponding results of the four-dimensional theory, 
the quantity A is replaced by the matrix y4 which accompanies the single 
time derivative in the Dirac equation. 

We end this section by illustrating these results using the special form 
of the transformation (1.5). The infinitesimal version of (1.5) is 

a . U v )  = 

1 0 0 -Aro 0 O' 
0 1 0 0 0 0 
0 0 I 0 0 0 

-Ago 0 0 1 A~ 0 
o o o - A ~  1 o 

0 0 0 0 0 1/ 

=/6 + AcoJ+ A~K 

where J14=J41 =-1,  K45 =-K54 = I, and all other elements are zero. The 
complete transformation may then be built up as 

xV'= lim(16+NJ+~K) (I6+NJ+~K) ""x~N 
61 Ct2 

= lim [(/6+ c~ J+--~ K)X] v x" 
N-~ok\ N N u 

= [exp(coJ+ OK)l~ux u = (exp Q)Vux" 
where Q -  o)J+ q~K. One may show that Q3 = (02 _ O2)Q, so that any power 
of Q can be written in terms of/6, Q, or Q 2. Expanding the exponentials, 
one finds 

exp(oJ+  ~bK)=/6 q s i n h ~  Q+ cosh mx/~f~- q~ 2 -  1 Q2 

On writing down the matrix Q, evaluating Q2, and making the substitution 
~b/co =(sin O)/v, cosh ~x/ /~-q~= y cos 0, then the transformation (1.5) is 
recovered exactly. 

The spinor transformation S may be constructed similarly. For the 
infinitesimal transformation it is 

i ~ i 18-- o "u A(-ovv= I8-~ ( Ao)O'I4-/~0)O'41 -t- A1~~ A~ O'54) 
4 

= h - 2 (ha'a '4 + Aq~a45) 
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Hence 

S = i I~ N NlJ__m IIs_~(N 00_14+~ 0045)] =expI_ ~ ((.000141_ q~0045)] 

where 

0 0 o  / 
00,4 i 0 00~ 

=2[Y" Y4]=iy' y4=-i 00,0 ~y,O O0 ~ J 

and 

( /0 0 12 
0 0 0 

0045 = [74  ys] = iy475 = 12 0 0 

~0 --12 0 

- /2  

Since 0014t: __Oo14 and 0 -45].--:-- 0045 it follows that 

S* = exp[~ (--(00"14-t - @0045)] 

and it is then easily verified that (2.2) is satisfied. 

3. P L A N E  W A V E  S O L U T I O N S  

A plane wave solution of (1.1) corresponding to a particle of 
6-momentum P~ has the form 

= exp(-iP, x")w 

where 

(y~e~,)w=mw (3.1) 

The 6-current (2.5) corresponding to such a solution is 

ju = w* A y~'w = (2m) -1 [ w* ( yZ* P z)A yUw + w* A yu ( 7/ZP z)w ] 

= (2rn) -1 wtA(y~y u + )'~y~)P~w = (rn)-JP~w*Aw (3.2) 

For a given 6-momentum P~, (3.1) has four linearly independent solutions 
w. It is convenient to specify these in terms of  eigenvalues of  spatial and 
temporal spin. The spatial spin ~ (measured in units of h/2) has components 

(El, ~2, ~3) = ( 0"23, 0"31, 0.12) : (iy22z3 i~,,3~1, iy1 y2) 

902/32/5-8 
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satisfying the Pauli relations 

~ ' j ~ k  = fijk[8 + iejktEt 

and given explicitly by 

~ 1 7 6  

0 ak 0 
~k = , (k = 1, 2, 3) 

0 Crk 

0 0 ak/  

Similarly the temporal spin �9 has components 

(l"1, r2,  2"3) = ( - a 5 6 ,  --0"64, --O'45) ~--- (-irsr 6, -if 'r", -i74r ') 

commuting with the Zk, satisfying the Pauli relations 

and given by 

Explicitly, 

rjrk = fijkI8 + iejktrt 

rk = --Tk+3A = - A ~  k+3, (k = 1, 2, 3) 

(i I2 o o ~ 
r~= 0 0 

0 12 

o o i!) 
0 -ii2 

"s ~ 
0 ii2 0 

\ - i i~ o o 

o o o 12 
r~= 0 0 

12 0 

The components of ~ and �9 in the directions of the unit 3-vectors 0 = [PI-lP 
and ~ = E - ~ E ,  respectively, will be known as the spatial helicity ~" ~ and 
the temporal helicity ~" ~. It is easily verified that these two 8 • 8 matrices 
commute with each other and with the matrix ~'uP~ on the left-hand side 
of  (3.1). We can therefore construct solutions w of  (3.1) which are also 
simultaneous eigenvectors of  the two helicities. Note that (3.2) with 
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/1 : 4, 5, 6 gives EwtAw/m =-wt zw ,  so that wt(t �9 E)w =-Ew*Aw/m.  Thus, 
if w is an eigenvector of temporal helicity, then wtAw has sign opposite to 
that of the temporal helicity of w. 

We shall obtain solutions w, of  (3.1) for r = 1, 2, 3, 4 satisfying 

('E'~)Wr=(--l)r--lWr 
( t "  s = ( - I )  r~+ I)/2w, (3.3) 

wtrAws : --(--1)r(r+l)/2~rs (T', S = 1, 2, 3, 4) 

In particular, w~ and w2 have negative temporal helicity and satisfy 

w~t Aw~ = w2t Aw2 = 1 

while w3 and w4 have positive temporal helicity and satisfy 

w3t A w3 : w4t A w4 = - -  1 

The wr are given explicitly by 

where 

wl = �89 u v  i , 

0 

w 2 =  �89 u v  
m /  

( 

/ ,~o' t Io 

I ! /  o 
I,t-1 

)~ ( E + m l ] / 2 + ( E - m y / 2  

= 5 mJ CTZm) 

(3.4a) 

(3.4b) 
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/ ~ +  \1/2 /~  \1/2 

,!. ~ + .~-~ = 2E/m> ~.~-,t. -2 = 71Pl/m 

and the unitary 8 • 8 matrices U and V are defined by 

U - e x p [ - ~  ( - - E  1 sin q~+Z2 cos ~b)] 

V-=exp - ~ -  ( - r l  sin q~+ r2 cos q~) 

where (0, ~) are the polar angles of p and (| q~) those of E. The properties 
(3.1) and (3.3) of the wr are easily verified in the special case 

P"  = (0, 0, Ipl, 0, 0, E )  

corresponding to 0 = |  U= V=Is, and their truth for general P~ imme- 
diately follows from the relations 

( r "  P , )  u v :  U V ( E r  ~ -  tplr ~) 

(~ . ~ ) u v =  uv~3,  (~ . s  u w 3  

which express the facts that U represents a spatial rotation sending (0, O, 1) 
to ~ and Va temporal rotation sending (0, O, 1) to i~. 

4. CHARGE CONJUGATION 

In the presence of an electromagnetic field with 6-potential d . ,  the 
Dirac equation (1.1) for a particle of mass m and charge e becomes 

t 0 

The operation V ~ ~'c of charge conjugation must reverse the sign of the 
charge, so gc must satisfy 
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Taking the complex conjugate of (4.1) and assuming that Vc = C~,* for some 
constant 8 • 8 matrix C, we obtain 

which is equivalent to (4.2) provided that 

_yu* C-1 = C-I y.  

that is, provided 

Since yi, 7/3, y4 and 
condition may be satisfied by taking (~ C= yly3),4y6 = ~ 

-icr2 

which also has the properties 

C 2 =/8,  C* = C, 

From these we immediately deduce that 

C-1y~' C = - y z *  

t6 are real, and y2 and y5 purely imaginary, this 

0 0 i(T2\ 

ia2 0 
0 0 

AC=CA 

v J A v c  = v t A v  and vc*AyVvc = - v*AyUv  

for any V. Since 

(yuP~,)C= -C(y~'P~,) * 

it is clear from (3.1) that charge conjugation must reverse the sign of the 6- 
momentum of a plane wave solution of the free Dirac equation (1.1). Since 

2~C= -CZ* and "cC= -C't* 

we see that spatial and temporal helicities will be invariant under charge 
conjugation. In fact, the plane wave solutions Wr defined by (3.4) satisfy 

Wrc(p) = CWr*(p ) : - i  exp{i[(- 1)"r - ( -  1) r(r+ 1)/2(I) ]} Wr(--p) 

as is easily proved using the evident relations 

CU *= UC and CV* = VC 

5. CONCLUSIONS 

The results obtained are closely analogous to corresponding results 
of the ordinary four-dimensional theory. However, there is the important 



812 Boyling and Cole 

difference in the six-dimensional case that the mass hyperboloid pup~ = m 2 
is connected, unlike its two-sheeted counterpart in four dimensions. Because 
of this, there is no dichotomy in the six-dimensional theory between plane 
wave solutions of positive and negative energy. On the other hand, both 
theories possess plane wave solutions w for which wtAw (or its four- 
dimensional analogue) has either sign. In the four-dimensional theory, the 
solutions for which this quantity is positive are precisely the positive-energy 
solutions. In the six-dimensional theory, it follows from (3.3) that the solu- 
tions with w t A w > O  are the ones which have negative temporal helicity. 
There is therefore a sense in which positive energy in the four-dimensional 
case corresponds to negative temporal helicity in the six-dimensional case. 
It is tempting to conclude that states of negative and positive temporal 
helicity in the six-dimensional theory correspond to particles and anti- 
particles, respectively. However, this interpretation is untenable, since 
temporal helicity is invariant under charge conjugation. 
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